
現在的應用——如手機和筆記本電腦——一直追尋的目標就是在盡可能小的空間里儲存盡可能多的能量。隨著單位體積內能量的提高,突然放電帶來的危險性也在上升,但是我們同樣能夠找到一些應對之法。比如對于手機電池,因為它比較小巧,所以我們可以通過在電池中加入限流器來提高它的安全性。
不過隨著越來越多的大型電池投入應用,人們會愈發關注這些體積巨大、單元眾多的大型電池的安全問題。
第一次飛躍:鋰離子電池
時至今日,絕大多數的新技術都要求電池具有更加緊湊的設計、更加充沛的電力、更好的安全性,還需要電池能夠充電再利用。
1980年,美國物理學教授John Goodenough發明了一種新型的鋰電池。在這種鋰電池中,鋰能夠在電池中以鋰離子的形式,穿梭于兩個電極之間。
鋰是周期表中最輕的元素之一,同時擁有著極強的電化學勢,這兩點優勢使得它能夠以最小的體積提供最高的電壓。
而這一點正是鋰離子電池的基礎。在這種新電池中,鋰和過渡金屬(比如鈷,鎳,錳以及鐵)與氧的化合物作為陰極。在外加電壓之后,再次充電開始,帶正電的鋰離子從陰極遷移到石墨材料制成的陽極,重新變為金屬鋰。
因為金屬鋰有著極強的電化學推動力,所以金屬鋰極容易被氧化,它會遷移至陰極并再次成為鋰離子,將外層電子交給過渡金屬離子(比如鈷離子)。在這一循環中的電子移動為我們提供了我們所需的電流。
第二次飛躍:納米技術
由于過渡金屬的加入,鋰離子每一個小單元都能夠提供更高的能量,但是反應活性的提高也會帶來負面效果,電池會更容易受到一種被稱為“熱散逸”現象的影響。
在90年代,索尼生產了一種氧化鋰鈷電池(譯者注:這也是第一款商用鋰離子電池),但是嚴重的“熱逸散”導致了很多這一型號的電池著火。如果這一問題無法得到解決,那么為了獲得更好的反應活性,使用納米材料制作電池陰極的設想也就無從談起了。
這一次,站出來的依然是Goodenough。他引入了一種由鋰、鐵以及磷酸鹽構成的新的鋰離子電池陰極,這種穩定的電極是電池技術的又一大飛躍。
伴隨著新電池的不斷發展,很多新應用也應運而生。從電動工具到混合與電動力汽車,我們都能夠找到鋰離子電池的影子,或許其中最重要的應用,將是為住宅提供家用電能。


